Pishi

Coverage guided macOS KEXT fuzzing.

Meysam Firouzi @ROOtkitSMM
POC2024
November 7-8, 2024

Whoami

* Security Researcher @ MBition - Mercedes-Benz Innovation Lab.

 Focusing on low level stuff.

e Used to be a Windows hacker, now mostly Linux and XNU.

https://RO0tkitSMM.github.io

Agenda

* Fuzzing ImagelO and AppleAVD.

 Why | ended up implementing Pishi.
 Kernel Instrumentation options.

o Structure aware fuzzing.

ImagelO

ImagelO is Apple’s Framework that handles image parsing, which exposes Oclick attack surface.

A deep dive into an NSO zero-click iMessage exploit: Remote Code
Execution

Posted by lan Beer & Samuel Grol3 of Google Project Zero

We want to thank Citizen Lab for sharing a sample of the FORCEDENTRY exploit with us, and Apple’s
Security Engineering and Architecture (SEAR) group for collaborating with us on the technical analysis. The
editorial opinions reflected below are solely Project Zero’s and do not necessarily reflect those of the
organizations we collaborated with during this research.

ISOSCELES Services Company Contact

A

The WebP Oday

Fuzzing ImagelO

Posted by Samuel GroB, Project Zero

This blog post discusses an old type of issue, vulnerabilities in image format parsers, in a new(er) context:
on interactionless code paths in popular messenger apps. This research was focused on the Apple
ecosystem and the image parsing API provided by it: the ImagelO framework. Multiple vulnerabilities in
image parsing code were found, reported to Apple or the respective open source image library maintainers,
and subsequently fixed. During this research, a lightweight and low-overhead guided fuzzing approach for
closed source binaries was implemented and is released alongside this blogpost.

Home » Blog

Exploiting the libwebp Vulnerability, Part 1: Playing
with Huffman Code

November 3, 2023 - 2345 words - DARKNAVY | Translations: Zh

» Table of Contents

Vulnerability Localization

Closed Source macQOS binary fuzzing.

IIORawCamera_Reader::testHeader
[I0O_Reader_Al::testHeader
[IO_Reader_ASTC::testHeader
[I0O_Reader_ATX::testHeader
[I0_Reader_AppleJPEG::testHeader
[IO_Reader_BC::testHeader
IO_Reader BMP::testHeader
[IO_Reader_CUR::testHeader
[I0O_Reader_GIF::testHeader
I0_Reader HEIF::testHeader
[I0O_Reader_ ICNS::testHeader
[IO_Reader_ICO::testHeader
[IO_Reader_JP2::testHeader
[I0O_Reader_KTX::testHeader
[I0_Reader_LibJPEG::testHeader
[IO_Reader_MPO::testHeader
[I0_Reader_OpenEXR::testHeader
[IO_Reader_PBM::testHeader
[IO_Reader_PDF::testHeader
[IO_Reader_ PICT::testHeader (macOS only)
[IO_Reader_PNG::testHeader
[I0O_Reader_PSD::testHeader
IIO_Reader_ PVR::testHeader
[IO_Reader_RAD::testHeader
[IO_Reader_SGl::testHeader (macOS only)
I0_Reader TGA::testHeader
[IO_Reader_TIFF::testHeader

ImagelO

Fuzzing ImagelO

Posted by Samuel GroB, Project Zero

This blog post discusses an old type of issue, vulnerabilities in image format parsers, in a new(er) context:
on interactionless code paths in popular messenger apps. This research was focused on the Apple
ecosystem and the image parsing API provided by it: the ImagelO framework. Multiple vulnerabilities in
image parsing code were found, reported to Apple or the respective open source image library maintainers,
and subsequently fixed. During this research, a lightweight and low-overhead guided fuzzing approach for
closed source binaries was implemented and is released alongside this blogpost.

In the end | decided to implement something myself on top of Honggfuzz. The idea for the fuzzing approach
is loosely based on the paper: Full-speed Fuzzing: Reducing Fuzzing Overhead through Coverage-guided
Tracing_

\e TUZZer en startea 1rom a smalil Corpus Of arouna /uUuU Seea Images Covering ne supporiea image
'mats and ran for multiple weeks. In the end, the following vulnerabilities were identified:

ImagelO

Closed Source macOS binary fUZZing . \e TUZzZEer men starteda om a smail Corpus Of arouna /uuU Seed Images Covering e Supportea image

‘mats and ran for multiple weeks. In the end, the following vulnerabilities were identified:

Everyone is fuzzing it now.

Can | beat them?
-0 Commits on Sep 11, 2020

Jackalope is a customizable, distributed, Extended TinyInst to macOS

coverage-guided fuzzer that is able to work with black-box binaries. W avniculae committed on Sep 11, 2020

-0- End of commit history for this file
Let’s give it a try, New fuzzer means covering more state spaces.
first commit

@ ifratric committed on Dec 15, 2020

F main

ImagelO

Closed Source macQOS binary fuzzing.
Everyone is fuzzing it now.

Can | beat them?

Wait a minute.

Three new test header functions for different file formats, such as KTX2, WebP, and ETC

Status of this document

KTX 2.0 ratified by the Khronos Board of Promoters Aug 14th, 2020.

ImagelO

Closed-source macOS binary fuzzing.
Everyone is fuzzing it now.

Can | beat them?

Wait a minute.

Three new testHeader functions for different file formats. such as KTX2 and WebP and ETC.

Status of this document

KTX 2.0 ratified by the Khronos Board of Promoters Aug 14th, 2020.

Samuel GrofB fuzzed OpenEXR, now ImagelO is using Apple’s closed-source new implementation of EXR in libAppleEXR.dylib.

One new implementation one and some new file formats.

ImagelO

To make sure that the coverage-guided fuzzing wouldn't diverge

Closed-source macOS binary fuzzing. towards other image formats supported by ImagelO.
Everyone is fuzzing it now.

Can | beat them? bool isKTX2Header(const uint8_t xbuffer, size_t size) {

const uint8 t ktx2Identifier[12] = {0xAB, 0x4B, 0x54, 0x58, 0x20, 0x32,
0x30, OxBB, 0x0D, Ox0A, Ox1A, Ox0A};

if (size < 12) {
return false;

}

return memcmp(buffer, ktx2Identifier, 12) == 0;

bool isEXRHeader(const uint8 tx buffer, size t size) {
const uint8_t exrMagicNumber([4] = {0x76, Ox2F, 0x31, 0x01};

if (size < 4) {
return false;

}

return memcmp(buffer, exrMagicNumber, 4) == 0;

Closed Source macQOS binary fuzzing.

Everyone is fuzzing it now.
Can | beat them?

Yes

CVE-2023-32384
CVE-2023-23519
CVE-2023-32372
CVE-2023-27929
CVE-2023-27948
CVE-2023-27947
CVE-2023-42899
CVE-2023-42865
CVE-2023-42862

ImagelO

ImagelO

Avalilable for: iPhone 8 and later, iPad Pro (all models), iPad Air 3rd gene
generation and later, and iPad mini 5th generation and later

Impact: Processing an image may lead to arbitrary code execution
Description: A buffer overflow was addressed with improved bounds ct

CVE-2023-32384: Meysam Firouzi @R0O0tkitsmm working with Trend N

ImagelO

Available for: iPhone 8, iPhone 8 Plus, iPhone X, iPad 5th generation, iPac
inch 1st generation

Impact: Processing an image may lead to arbitrary code execution
Description: The issue was addressed with improved memory handling.

CVE-2023-42899: Meysam Firouzi @RO0tkitSMM and Junsung Lee

ImagelO

Available for: iPhone 8 and later, iPad Pro (all models), iPad Air 3rd generation and later, iPad 5th
generation and later, and iPad mini 5th generation and later

Impact: Processing an image may result in disclosure of process memory
Description: An out-of-bounds read was addressed with improved input validation.

CVE-2023-42862: Meysam Firouzi (@R00tkitSMM) of Mbition Mercedes-Benz Innovation Lab

HEIF File Extension

KTX, WebP, and EXR are file formats.

But HEIF is different Payload Extension

HEIC: HEVC(H.265) in HEIF

H.264 .avei

AVCI AVC in HEIF any codec .heif

Reference: Apple, 503_introducing_heif_and_hevc.pdf and 513_direct_access_to_media_encoding_and_decoding.pdf

Who is decoding H.264, H.265,...7

AppleAVD

How can | fuzz H.264 and H.265 with Jackalope?

Let’'s see what is happening on AppleAVD with DTrace

DTrace is a comprehensive dynamic tracing framework

Opening image HEIC or AVCI will lead to)

_ZN8AppleAVD13newUserClientEP4taskPvjPP12I0UserClient:entry execname VTDecoderXPCSe

c++filt —n _ZN8AppleAVD13newUserClientEP4taskPvjPP12I0UserClient
AppleAVD: :newUserClient (taskx, void*, unsigned int, IOUserClientxx)

cd /System/Library/Frameworks/VideoToolbox. framework/XPCServices/VT
VTDecoderXPCService.xpc/ VTEncoderXPCService. xpc/

https://en.wikipedia.org/wiki/Tracing_(software)

AppleAVD

ImagelO does not talk with AppleAVD directly.

Im 10 VTDecoderXPC
’1 age Service.xpc
HEIF]

IOConnectCallMethod 265, User Mode

Kernel Mode

AppleAVD .kext

v

AVD
coprocessor

Can ImagelO talk with AppleAVD directly?

lvan: Yes

But we are fuzzing file format if we mutate files.

And payload is deep inside HEIF

ImagelO

IOConnectCallMethod H:ggg:m

User Mode

AppleAVD.kext

Kernel Mode

AppleAVD

™ lvan Fratric @ifsecure - Jan 11
3 In December, in macOS Sonoma, Apple fixed 15 video decoding
vulnerabilities | reported. This is how these issues were found:
github.com/googleprojectz...

Q2 11 45 Q 197 i1 36K &
3 Ivan Fratric @ifsecure - Jan 11

The issues themselves are now also public, see

bugs.chromium.org/p/project-zero... and bugs.chromium.org/p/project-

Zero...

@) n Q5 1 1.9K Q&

One issue encountered during early testing is that, by default, VideoToolbox creates a separate decoding process, where the decoding
actually happens. Thus, a fuzzing harness that just calls video decoding functions won't work well because all the interesting processing
will not happen in the harness process. Fortunately, in the VideoToolbox module, a flag called sVTRunVideoDecodersInProcess exists, which
as the name suggests, causes decoding to take place in the same process. While this flag is not exported, it can also be set by calling the
exported function VTApplyRestrictions with the argument set to 1. This is what the harness does during initialization.

AppleAVD

Let’s mutate payload just before passing to the kernel.

ImagelO

IOConnectCallMethod Eé%;_ User Mode
\ Kernel Mode
AppleAVD .kext

ImagelO is Apple’s Framework that handles image parsing, which exposes Oclick attack surface.

typedef struct interposer {
void* replacement;

void* original;

} interpose_t;

__attribute__((used)) static const interpose_t interposers|]

__attribute__((section("__DATA, __interpose"))) =

{
{ .replacement
.original

voidx)fake_IOConnectCallMethod,
voidx)I0ConnectCallMethod

void flip_bit(void* buf, size_t len){
if (!len)
return;
size_t offset = rand() % len;
((uint8_tx)buf) [offset] ~= (O0x01 << (rand() % 8));
}

kern_return_t fake_IOConnectCallMethod(....

0

flip_bit(inputStruct, inputStructCnt);

return I0ConnectCallMethod
connection,
selector,
input,
inputCnt,
inputStruct,
inputStructCnt,
output,
outputCnt,
outputStruct,
outputStructCntP);

AppleAVD

panic(cpu 4 caller oxfffffe0026851cdc): Unaligned kernel data abort. at pc oxfffffe@026aed514, 1r oxfffffe0026aed5d8 (saved state: Oxfffffe3a396e3200)

x0: x1: X2: x3: oOxfffffe3a396e3444

x4: x5: X6: x7: Oxffffffffffffffff

x8: x9: : : 0x0000000000000002

: 0x0000000000000000

: Oxfffffelb40e90000

: 0x0000000000000001

: 0x00000000000008b0

Oxfffffe3a396e3550

pc: - - : Oxfffffelo02bdcolb

Debugger message: panic

Memory ID: 0x6

0S release type: User

0S version:

Kernel version: Darwin Kernel Version 23.2.0: Wed Nov 221l EEN PST 2023; root:xnu-10002.61.3~2/RELEASE_ARM64_T8103
Fileset Kernelcache UUID:

Kernel UUID: E245D804- -31E2- -B4DF75B2129E

I0ConnectCallMethod 232‘; User Mode l.300t session uu;n: 52885412-0864- - -
I iBoot version: iBoot-10151.61.

Kernel Mode

AppleAVD

Available for: iPhone XS and later, iPad Pro 13-inch, iPad Pro 12.9-inch 2nd generation and later, iPad Pro
AppleAVD.kext 10.5-inch, iPad Pro 11-inch 1st generation and later, iPad Air 3rd generation and later, iPad 6th generation
and later, and iPad mini 5th generation and later

Impact: An app may be able to cause unexpected system termination
Description: The issue was addressed with improved memory handling.

CVE-2024-27804: Meysam Firouzi (@RO0tkitSMM)

Entry updated May 15, 2024

What we are mutating?
let’s talk with AppleAVD directly.
But we have no clue what functions or BBs have been covered.

CFMutableDictionaryRef matching = I0ServiceMatching("AppleAVD");
I0ServiceGetMatchingServices(kIOMasterPortDefault, matching, &iterator);

err =

AppleAVD

io_service_t service = I0IteratorNext(iterator);
, stype, &conn);

err =

9,

ImagelO

TOConnectCallMethod E:ggg:"_ User Mode

\ Kernel Mode

AppleAVD .kext

I0ServiceOpen(service, mach_task_self
I0ConnectCallMethod (
conn,

inputScalar,

inputScalarCnt,
inp,

0xd8,
outputScalar,

&outputScalarCnt,

outputStruct,
&out_num);

This is part of a POC by Natalie Silvanovich.

This is good.

But we have no clue what are have covered.

ImagelO

IOConnectCallMethod ::ggg:"_

User Mode

AppleAVD.kext

Kernel Mode

DTrace again.

AppleAVD

CFMutableDictionaryRef matching = I0ServiceMatching("AppleAVD");

err = I0ServiceGetMatchingServices(kIOMasterPortDefault, matching, &iterator);

io _service t service = I0OIteratorNext(iterator);
err = I0ServiceOpen(service, mach_task_self(), stype, &conn);
I0ConnectCallMethod(|,

conn,
0,

inputScalar,
inputScalarCnt,
inp,
0xd8,
outputScalar,
&outputScalarCnt,
outputStruct,
&out_num) ;

Part of a POC by Natalie Silvanovich.

meysam@meysams-MacBook-Air %
meysam@meysams-MacBook-Air %
%

meysam@meysams-MacBook-A1ir sudo dtrace -1 | grep AppleAVD |

1501
meysam@meysams-MacBook-Air %

Just fifteen hundred.
anyway this is not an input for fuzzer.

wc -1

AppleAVD

Fuzzing AppleAVD

Willy R. Vasquez
https://wrv.github.io > ... PDF

Finding and Exploiting Vulnerabilities in H.264 Decoders

by WR Vasquez - Cited by 1 — Our fuzzing setup consisted of (1) generating a batch of. 100 videos on a
host machine, (2) transferring them to the iOS device under test (...

18 pages
Cinema time!
P® Project Zero Q_ AppleAVD Abstract
C Media parsing is known as one of the weakest components of every consumer system. It often o
security requirements, such as attack surface minimization, compartmentalization, and privileg
] P v TYPE v TITLE ¥ interesting case for two different reasons. First, instead of running in usermode, a considerable p
kernel to additional remote attack vectors. Second, recent anonymous reports suggest that Apple
|:| v P2 Bug AppleAVD: Memory Corruption in AppleAVDUserClient::decodeFrameFig , :) : : .)
depth, covering video decoding subsystem internals, analysis of vulnerabilities, and ways to exploit
|:| v P2 Bug AppleAVD: Missing surface lock in deallocateKernelMemorylinternal
Resources
|:| st P2 Bug AppleAVD: Overflow in AVC_RBSP::parseSliceHeader ref_pic_list_modification

Slides: hexacon2022_AppleAVD.pdf

AppleAVD

Fuzzing AppleAVD

AppleAVD is closed source.

Dumb fuzzing won’t give us anything. we need a feedback-driven fuzzing.

What are the macOS kernel instrumentation options for M1/Apple Silicon?

KEXT/XNU Fuzzing

macOS kernel instrumentation options for M1/Apple Silicon:
macOS is a mix of open source and closed source components.
Open Source part:

XN U: KSAN COV, KASAN kernel binary in KDK does not have KSANCOV. And | don’t like building XNU with KCOV.

XNU: SOCkFUZZGF, XNU kernel is compiled as a library and run within a custom user space environment.

BUT AppleAVD is Closed source.

KEXT/XNU Fuzzing

macOS kernel instrumentation options for M1/Apple Silicon:
How to instrument closed source KEXTs?

Hardware-based instrumentation:

Intel CPUs:
Intel-PT is a technology available in modern Intel CPUs that allows efficient tracing of all the instructions executed

by a process.
KAFL relies on a special CPU feature, i.e., Intel Processor Trace (Intel-PT), to collect the code coverage information

But M1/Apple Silicon is Arm based.

KEXT/XNU Fuzzing

macOS kernel instrumentation options for M1/Apple Silicon:

« Tracing .
PUT < L
Hardware based instrumentation: pETTE e
CPU -
]
\ CoreSight [TFeedback » FL
ARM CPUs:
Coresight is an umbrella of technologies allowing for the debugging of ARM based SoC. b-2) CoreSight mode
It includes solutions for JTAG and HW-assisted tracing.

ARMored CoreSight: Towards Efficient Binary-only Fuzzing

CoreSight is a set of hardware features designed to enable system debugging, profiling, and tracing.
important components of CoreSight are the ETM (Embedded Trace Macrocell) and ETR (Embedded Trace Router)

CoreSight is a set of hardware features designed to enable system debugging, profiling, and tracing.
Two important components of CoreSight are the ETM (Embedded Trace Macrocell) and ETR (Embedded Trace Router)

LYUITO

2099
2100
2101
M 2102
2103
2104
2105
2106

KEXT/XNU Fuzzing

/*

* CoreSight debug registers

*/
ledefine
#define
#define
#define

CORESIGHT_ED 0
CORESIGHT_CTI 1
CORESIGHT_PMU 2
CORESIGHT_UTT 3 /% Not truly ¢

; Meysam
@RO0OtkitSMM
XNU has four CoreSight-related MMIO regions. ED, CTl, PMU, and UTT,

does this mean AppleSilicons don't have ETB,ETM,...? CC @octOxor
github.com/apple-oss-dist...

@ Meysam @R0oOtkitSMM - Jul 16
Holy Mother Dragon, what a blogpost about CoreSight.

ARMored CoreSight: Towards Efficient Binary-only Fuzzing
ricercasecurity.blogspot.com/2021/11/armore...

413 PM - Jul 16, 2024 - 4,379 Views

il View post engagements

>

C) i 12 Q 20 [

@ Post your reply

‘ Boris Larin @oct@xor - Jul 16
Or they are just undocumented? :)

Q1 0 ¥s3 il 857 A

>

But ETM and ETR are not available in Apple Silicon.
or they are just undocumented:

KTRW: The journey to build a debuggable iPhone

Operation Triangulation

https://googleprojectzero.blogspot.com/2019/10/ktrw-journey-to-build-debuggable-iphone.html

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Loading KEXT into user mode with a custom Mach-O loader
https://github.com/pwnQrz/fairplay_research/tree/master Implements a loader.

partially with extracted IDA decompiler pseudocode

https://github.com/taviso/loadlibrary, to load dll in Linux

https://github.com/pwn0rz/fairplay_research/tree/master
https://github.com/taviso/loadlibrary

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Instrumentations for binary-only fuzzing are categorized into:

Dynamic instrumentation:

Inserts the code for generating feedback into the target program at run time.

With breakpoint or like Jackalope binary rewriting.

feasible but difficult.
No breakpoint in Apple Silicon.

Anyway, it needs two devices.

Run-time

Fuzzer <«

v

. | Tracer

Feedback

Binary

e e

(b) Dynamic Instrumentation

ARMored CoreSight: Towards Efficient Binary-only Fuzzing

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Static instrumentation: R —— .
statically rewriting target binaries. . Run-time .

Fuzzer [€——

Before run-time ¢
Static
Binary : ,
o :> ool :> e :> e Feedback
Tool Inst Inst

| decided to investigate on this one. =t 10| L e

(a) Static Instrumentation

ARMored CoreSight: Towards Efficient Binary-only Fuzzing

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Static instrumentation or Binary rewriting
What do we have to study?

Retrowrite: a static binary rewriter for x64 and aarch64

StochFuzz: A New Solution for Binary-only Fuzzing
ArmWrestling: Efficient binary rewriting for aarch64. which contains IL lifting

ARMore: Pushing Love Back Into Binaries
More and more talks

Great talks but they are mostly about user mode binaries. And Linux ELF files

existing methods have fundamental limitations when applied to macOS KEXTs.

https://www.computer.org/csdl/journal/tq/2024/04/10315961/1S2UHhBqryU

Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

Next 2 days:
How to load KEXT?

Do hardware mitigations (KTRR,...) allow me to patch memory
in M1?

How to fuzz KEXT?

KextFuzz @

KEXT/XNU Fuzzing

kext binary rewrite

All Videos 1Images News Web Books Finance

Tutorial Example Mac Github

IEEE Computer Society
https://www.computer.org » csdl » journal » 2024/04 ¢

KextFuzz: A Practical Fuzzer for macOS Kernel ...
by T Yin - 2024 — KextFuzz patches the target kext via static binary rewriting before fuzzing it.
Compared with the original kext, the patched kext (the kext” in Fig. 6) is ...

https://github.com > vul337 > KextFuzz

Code of KextFuzz: Fuzzing macOS Kernel EXTensions on ...

The ./rewrite directory contains the code to do kext instrumentation and entitlement patch. Step 1. Get a
patched kext. Note: edit ./rewrite/config.json to ...

é;’ USENIX

https://www.usenix.org » usenixsecurity23-yin PDF

KextFuzz: Fuzzing macOS Kernel EXTensions on Apple ...

by T Yin - 2023 - Cited by 2 — With the novel static binary rewriting method,. KextFuzz can track code
coverage and find 6X more crashes than a black-box baseline fuzzing ...

17 pages

Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

L

KextFuzz: Fuzzing macOS Kernel EXTensions on Apple Silicon via Exploiting Mitigations

What is Kext Collection?

In macOS 11 or later Apple has changed its previous scheme of prelinked kernelcaches and Loadable
kernel module, to three prelinked kernel collections blobs:

 The Boot Kext Collection (BKC), contains the kernel itself, and all the major system kernel
extensions required for a Mac to function.

 The System Kext Collection (SKC), This contains all the other system kernel extensions, which are
loaded after booting with the BKC.

e The Auxiliary Kext Collection (AKC), is built and managed by the service kernelmanagerd. This
contains all installed third-party kernel extensions, and is loaded after the other two collections.

KEXT/XNU Fuzzing

How to load KEXT?

kext

+ kernel
+
extra kext
Export table | _covPcC

$kmuti createl ...

D

kernel

kext

kext

extra kext

kernel collection

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

What are they instrumenting?

How they are instrumenting?

KEXT/XNU Fuzzing

Replacing a function name in a KEXT, with a string of another function(with exactly same size)

Sf[atic instru_mentation: I code/text
Binary rewriting =
BL 10Log _COVPC
How they are instrumenting? l l
IAT hooking St“lbs St”lbs
String table: ~10Log _COVPC

Hooking import table

Kernel Our KEXT

Software based binary Instrumentation:

KEXT/XNU Fuzzing

Before rewriting After rewriting
What are they instrumenting? dr x16, [xol r x16, [xol
2 mov x17, x0 mov x17, x0
3 mov x17, #0xcdal, Ls1#48 | mov x17, #0Oxcdal, Ls1#48
4 autda x16, x17 autda x16, x17
5 mov x17, x16 mov x17, x16
6 xpacd x17 nop
Where can they put this BL instructions 7 cmp x16, x17 [)bl _COVRC
. 8 b.eq LOC_10 nop
without corrupting the original behavior? o bk soreaTs
10
After rewriting: basic blocks util.kext

1- XPACD instructions N

e XPAC* instructions remove a pointer's PAC and restore the original value without performing |
verification. i

Image by KextFuzz paper.

https://www.usenix.org/conference/usenixsecurity23/presentation/yin

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Static instrumentation:

Binary rewriting Compiler emitted code for each vtable access.

XPACD instruction can be replaced by a BL. : 2a0803f1 mov x17, x8

: f2197d71 movk x17, #@xcbeb, 1lsl #48
: daclla30 autda x16, x17 # v

: aalea3fl mov x17, x16

: dacl47f1 xpacd x17

: eb11021f cmp x16, x17 pal | f tl | | m _
: 54000040 b.eq 0x9758 <__ 7ZN20I0SurfaceSharedEvent25signal_completed_internalEyb+0x88>

: d4388e40 brk #0xc472

It’s not part of the program logic.

Calling into a imported function is through

"3 : 00000000000360d8 <__auth_stubs>:
_al.I'.th_StUbS and s ClObberlng X1 6’ X1 7 and current LR 360d8: d0000031 adrp x17, 0x3c000 <_zalloc_flags+0x3c000>
we will answer this later. 360dc: 91000231 add x17, x17, #0x0

360e0: 19400230 ldr x16, [x17
360e4: d71f0all br

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Static instrumentation: ## instrument by replacing x30 pa (PACIBSP) instuction, not S€a@Ble in some cases ##
. y- kext_bytes = instrument x30 pa(kext_bytes, fileoff, filend, stub_addr)
Binary rewriting g " !

Part of KextFuzz code

Where can they put this BL instructions PACIASP prologue
without corrupting the original behavior? SUB sp, sp, #0x40

STP x29, x30, [sp,#0x30]
ADD x29, sp, #0x30
2- PACIBSP instructions

LDP x29,x30, [sp,#0x30]
ADD sp,sp,#0x40

AUTIASP :
epiloque
RET PHOY

Again this is not part of the program logic.

https://www.usenix.org/conference/usenixsecurity23/presentation/yin

Static instrumentation:
Binary rewriting

This Is good but not enough.

DOOK-F 0
meysam@meysams-MacBook-Air Pishi %
meysam@meysams-MacBook-Air Pishi % objdump

meysam@meysams-MacBook-Air Pishi %

KextFuzz can instrument kexts at basic block granularity
roughly because the kexts are developed in C++ and widely
use PA instructions to protect return addresses and indirect
calls. In addition, the PA instructions distribute at different

points of the program.

Part of KextFuzz paper.

All functions + ALL XPACD instructions, is not roughly, it’s barely.

--disassemble IOSurface | grep -1 XPACD | wc -1

KEXT/XNU Fuzzing

Software based binary Instrumentation:

if(k_buffer[@] =='M'
if(k_buffer[1l] =="E'
if(k_buffer[2] =='Y'
if(k_buffer[3] =='S'
if(k_buffer[4] =='A"
if(k_buffer[5] =='M'
if(k_buffer[6] =='6"

if(k_buffer[7] =='7"
if(k_buffer[8] =='8"
if(k_buffer[9] =='9"
printf("boom!\n");
intkx p = (intx)0x41414141;
*p = 0x42424242,;

https://www.usenix.org/conference/usenixsecurity23/presentation/yin

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Static instrumentation: Let’s recap what is happening.
Binary rewriting kernel collection
kernel
$kmuti createl ...
kext + kernel ' "
+
kext
'"s"::,'j"ted + | extrakext
Instrumented
ﬂ kext
Export table | _covpcC extra kext

Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

how to instrument every BB?

Opportunities and challenges.

kext + kernel
We can embed a KEXT into kernel collection. .
But we don’t know the load address. instrumented | | oxtra kext
(The address of _COVPC or any shellcode is unknown at the instrumentation time.) ﬂ
aISO Export table | _covpc

We can’t just call into a exported function from arbitrary address. 2
(Calling into a imported function is through __auth_stubs and it’s clobbering X16, X17 and current LR.)

Other instruction can’t be removed without changing intended behavior.

KEXT/XNU Fuzzing

$kmuti createl ...

v

kernel

kext

Instrumented
kext

extra kext

kernel collec

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

how to instrument every BB?

Calling into a imported function is through __auth_stubs and it’s clobbering X16, X17 and current LR.

autda x16, x17

00000000000360d8 <__auth_stubs>: mov x17, x16
360d8: d0000031 adrp x17, 0x3c000 <_zalloc_flags+0x3c000> xpacd x17
360dc: 91000231 add x17, x17, #0x0 cmp x16, x17
360e0: 9400230 ldr x16, [x17] b.eq 0x9720

360e4: d71f0all br x16, x17 brk #0xc472
ldar x9, [x16]

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

how to instrument every BB?

This needs to patch 5 instructions. To save and restore CPU context, otherwise registers will be clobbered.

stp x16

stp lr, lr
bl COV_

ldp 1r,

ldp x16, x17

cov :

running original instructions.
ret

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

Problem:
We can't just put BL instruction into a random address. we need to preserver x16,x17 and LR.

We don’t know where does our KEXT gets loaded to directly jump somewhere in it.

Replacing any instruction with BL needs to patch 5 instructions.

Possible Solution:
what what about modifying __auth_stubs or adding a new section to Mach-O?

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

what what about modifying __auth_stubs or adding a new section to Mach-O?

kmutil returned an error.
kmutil just ignored added section.

else if (instruction != @xD503201F) {
// ignore imml2 instructions optimized into a NOP, but warn about others
kcgen_terminate(, instruction, fromNewAddress);

}

break;

KEXT/XNU Fuzzing

Software based binary Instrumentation:

What does kmutil is doing under the hood?

Kmutil Is just another binary rewriting tool.

Let’'s see what has happened to BL and __auth_stubs in kernel collection.

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

Let’'s see what has happened to BL and __auth_stubs in kernel collection.

kmutil is rewriting KEXT into one blob. Calls are directly to the function, and not through __auth_stubs

bl to_a stub_address" # 1

bl fixed address

Software based binary Instrumentation: L

KEXT/XNU Fuzzing

Static instrumentation:
Binary rewriting

kext

+ kernel

Depreciate: on-demand loadable KEXT, kernel had to bind and fix any relative address at runtime.

+

extra kext

g

Export table | _covpc

$kmuti createl ...

D

Now: prelinked blobs, to speed up the boot process these steps are done at link time when you are creating a Boot Kext Collection.

Not for AKC

In macOS 11 or later Apple has changed its previous scheme of prelinked kernelcaches and Loadable
kernel module, to three prelinked kernel collections blobs:

» The Boot Kext Collection (BKC), contains the kernel itself, and all the major system kernel
extensions required for a Mac to function.

» The System Kext Collection (SKC), This contains all the other system kernel extensions, which are
loaded after booting with the BKC.

e The Auxiliary Kext Collection (AKC), is built and managed by the service kernelmanagerd. This
contains all installed third-party kernel extensions, and is loaded after the other two collections.

No clobbering for KEXTs
In Boot Kext collection

kernel

kext

kext

extra kext

kernel collection

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Static instrumentation: |
Binary rewriting kmutil removes __auth_stubs of boot collection.

this is not a case for AKC. Latter at boot time xnu will load and fix AKC.
void AppCacheBuilder::buildAppCache(const std::vector<InputDylib>& dylibs)

' oooc

if (removeStubs) {

rewriteRemovedStubs();
} else {

}

}

void AppCacheBuilder::rewriteRemovedStubs()

Software based binary Instrumentation:

Static instrumentation: L
Binary rewriting |
kext + | kernel
+
extra kext
!
Export table | _covee

load address of KEXTs within kernel Collection are relatives to each other.
It’s now one big blob

consequently unlink KextFuzz, instead of instrumenting a KEXT’s Mach-O file, bl to_a_stub_address”

we instrument them later inside Boot Kext Collection blob.

bl fixed_address # in ke

KEXT/XNU Fuzzing

$Skmuti createl ...

v

kernel

Kext

kext

extra kext

kernel collection

Oxfffffffb84aa000

BL directly to an
exported function.

Oxfffffffo84da000

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Some instructions

P

(U

B =/
" mov MS

mov x1, x19
mov X2, x20

N

/

)

We can simply put lots of trampolines into our kext.

trampoline

//’

= Save Context

~ | mov X0, x16

~—__ 1

=

Restore Context

asm volatile

/

void instrument_thunks

“.rept "
. STR x30,

()

xstr(REPEAT_COUNT_THUNK) "

[sp, #-16]!\n"

bl _push_regs\n"

mov XV

mov
mov

mov X

mov

/]
’

x1,
x1,
x1,

v/ "H

#0x0000\n"
#0x4141\n"
#0x4141\n"
#0x4141\n"
#0x4141\n"

bl _sanitizer_cov_trace_pc\n"
bl _pop_regs\n"

LDR x30,

\nll
\nll

".endr\n"

a
’

[sp]l, #16\n"

Each Instruction hooking needs its own trampoline,
to be able to execute the original patched instruction.

KEXT/XNU Fuzzing

kernel collection

L kernel

Static instrumentation: Skmut create ...
. . ' kext + | kernel | >
Binary rewriting O B4am000
+ Instrumented
Kext
Memory spray but this time for fuzzing.
B directly to a trampoline
trampoline
.rept 0x1000 ___
sanitizer_cov_trace_p
STR x30, [sp, #-16]! _}%&?%
nop bl _push_regs sanitizer_cov_trace_pc tramPOIine
mov x0, #0x0000 PIShl keXt
endr mov x1, #0x4141 Pishi kext
mov > #0x4141
mov X #0x4141
mov X #0x4141 trampoline
bl _sanitizer_cov_trace_pc trampoline Some instructions
bl _pop_regs
LDR x30, [spl, #16 trampoline / \
trampoline B —— trampoline
’n >3>< 16
- mgz x1, x19 \CSave Context
mov x2, x20

Restore Context
~] mov xO0, x16

0 / ~——
.

KEXT/XNU Fuzzing

Software based binary Instrumentation:

What to instrument?

coverage guided fuzzing needs metrics 3B1 881
alloc
Fuzzer-centric code coverage metrics:
edge edge
1. Control flow coverage:
o Basic blocks coverage edge BB2:
BB3 i
o Edge coverage edge
o Paths coverage
o Stack Coverage! edge edge
2. Data flow coverage 1
BB3 BB3:
free
In CFG a Node is BB. No vulnerability with 100% coverage.

“control-flow graph (CFG) is a representation, using graph notation, of all paths that might be traversed through a program during its execution.” (Wikipedia)

“a basic block is a straight-line code sequence with no branches in except to the entry and no branches out except at the exit.” (Wikipedia)

https://en.wikipedia.org/wiki/Code_coverage

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Static instrumentation:

Binary rewriting BBs are sufficient

Binary rewriting is difficult.
Even more difficult in the kernel.

Every mistake is panic.

How to instrument?
How to assemble/disassemble?

How to fix the relative instruction?

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

How to instrument?

After playing with Keystone And thinking about IDA-PRO.
| decide to use Ghidra.

https://www.keystone-engine.org/

KEXT/XNU Fuzzing

Software based binary Instrumentation:

How to instrument and how to fix the relative instructions?

Do we even need that?

1.All ARM64 Instructions are 32 bits long.
2.BBs are Disjoint sets (| explain this later).
3.Almost all ARM64 instructions are non-relative.

following instructions are relative instructions:
* B and its sub instructions are PC relative
 ADR: PC-relative address.
 ADRP: PC-relative address to 4KB page. (but it definitely has one "add" after it.)
 LDR (literal): Load Register (literal). only one Addressing modes.
* LDRSW (literal): Load Register Signed Word (literal).
e PRFM (literal): Prefetch Memory (literal).

Branches are the edges of the CFQG, so they are not part of BBs.

KEXT/XNU Fuzzing

Software based binary Instrumentation:

But how to fix the relative instructions?
Do we even need that? ARM64 Operand Architecture

Operands:

Immediate MOV X0,42

Call/Pass by Value
Register ::: MOV X0,X1 ----==-=-======="~ GP registers X0-X7/W0-W7

FP registers V0-V7/D0-D7/S0-S7

Memory ___ LDR X0,[X5] Call/Pass by Reference
"""""""""" Load:
LDR X0, mm ..
~~~~~~~~~~~ Addressing modes:
~~~~~~~~~~ [X1] — base register Offset expressions:
[X1,offset] — offset [X1,10] — fixed integer
Return: __. [X1,offset]! - pre-indexed 77T [X1,X2] - register
______________ [X1],offset — post-indexed [X1,X2, LSL 2] - register shifted left by 2
Floating Point: Store: = -7 label — PC relative label [X1,W2, UXTW 2] — 32-bit register shifted left
FP register V0/D0/S0 STR X0, mm
(E;\éergr:isr:gre)l(s(;\:/v . © 2021 EHN & DIJ Oakley

https://eclecticlight.co

AArch64 mnemonics can have 3 types of operands. Immediate, Register, Memory

KEXT/XNU Fuzzing

Software based binary Instrumentation:

But how to fix the relative instructions?

Do we even need that?

Data movement, arithmetic, logical, shift and rotate, etc instruction.

Instruction = [

Almost all ARM64 instructions are non-relative. and', 'ldadd’.
We can find at least one SR
non relative(to current address) instruction inside each BB. ‘sr', ‘cmp',
‘orn’ '‘bic’,
‘neg’ ‘adc’,
‘eor' ‘sbc’,

‘ubfx', ‘'msub’',
‘xtn', "fmov ',
‘asr', 'strb’,
‘strh', 'xtn',
'sxtb', 'sxth',

KEXT/XNU Fuzzing

Software based binary Instrumentation:

But how to fix the relative instructions?

Do we even need that?

Does the location of instrumentation within each basic block (BB) matter? T441c b LAB 00004420

When doing BB level instrumentation.

000043f8 - LAB_000043f8 E-C N

...43f8
«.43fcC
«.4400
...4404
...4408
«.440cC
4410
...4414
.4418

adrp
ldr
str
bl
bl
ldr
subs
cset
tbnz

LAB_000043f8

x8,0x584000

x8, [x8, #offset _instrumen...
x8, [sp]=>local_30
_current_thread

_thread_tid

x8, [sp]=>1ocal_30

x8,x8,x0

w8, ne

w8 ,#0x0,LAB_000044c0

No BBs are Disjoint sets (| explain this later) of addresses.

each instruction of a BB can represent that BB equally.

0000441c g~ [M

00004420 - LAB_00004420 . ~ |

Ll

LAB_00004420
..-4420 adrp x8,0x584000

...4424 1drh w8, [x8, #0x110]=> targeted...

...4428 ldurhw9, [x29, #local 12]
...442c and w8,w8,w9

...4430 ldurhw9, [x29, #local 12]
...4434 subs w8,w8,w9

...4438 cset w8,ne

...443c tbnz w8,#0x0,LAB_000044bc

Software based binary Instrumentation:

But how to fix the relative instructions?
Do we even need that?

1- Location of instrumentation within each basic block does not matter

2- With high probability there is at least one non relative instruction in every BB.

KEXT/XNU Fuzzing

000043f8 - LAB_000043f8 -] M

...4318
ST
.4400
...4404
...4408
.440c
4410
...4414
.4418

adrp
dr
str
bl
bl
ldr
subs
cset
tbnz

LAB_ 00004318

x8,0x584000

x8, [x8, #offset instrumen...
x8, [sp]=>1ocal 30

_current_thread

thread tid

;8,[sp]=>local_30

X8 ,x8, x0
wd,ne
w8 ,#0x0,LAB_000044c0

KEXT/XNU Fuzzing

Software based binary Instrumentation:

We can enumerate BBs in Ghidra.
We can disassemble/assemble instructions.

you can find at least one instruction in every basic block (BB) that is non PC-relative.

all_basic_blocks = get_basic_blocks(toAddr(start_address), toAddr(end_address)) #

if not all _basic_blocks:
print("all_basic_blocks is empty check if start_address and end_address is correct.")

Ghidra script:

find stubs in our KEXT.
find BBs in requested address ranges.

loop into BBs: find one non-relative instruction.
replace it with jump to stub.
rewrite the stub: use next stub.

assembler = Assemblers.getAssembler(currentProgram) # ty i
create_label(stub_address, "meysam_stub _number_ " + str(bb_index))
create_label(patch_address.add (INSTRUCTION_SIZE), "meysam_return_number_" + str(bb_index))

patched_instruction = "b {}".format("meysam_stub_number_" + str(bb_index))
assemble_opcode(assembler, patch_address, patched_instruction)

KEXT/XNU Fuzzing

. . Ghid Ipt:
Software based binary Instrumentation: P o

find BBs in requested address ranges.

We can enumerate BBs in Ghidra. loop into BBs: find one non-relative instruction.
We can disassemble/assemble instructions. replace it with jump to stub.
you can find at least one instruction in every basic block (BB) that is non PC-relative. rewrite the stub: use next stub

Before: Stubs
Before: Target BB

...€000a28298c fe 0f 1f f8 str x30, [sp, #-0x10]!
...000a282990 34 ff ff 97 bl _push_regs
...€000a282994 00 00 80 d2 mov x0,#0x0
...£000a282998 21 28 88 d2 mov x1,#0x4141
FUN_fffffe000a800d90 ...e000a28299¢c 21 28 88 d2 mov x1,#0x4141
...e000a800d90 7f 23 03 d5 pacibsp ...e000a2829a0 21 28 88 d2 mov x1,#0x4141
...6000a2829a4 21 28 88 d2 1,#0x4141
...€000a800d94 ff c3 05 dl sub 5P Sp'#OX170 ...:000:2829:8 76 ff ff 97 rl')"]).V isani)t(izer_cov_trace_pc
...e000a800d98 fc 6f 15 a9 stp x28,x27, [sp, #0x150] ...e000a282%c 51 ff ff 97 bl _pop_regs
...e000a800d9c fd 7b 16 a9 stp x29,x30, [sp, #0x160] e 1 ou o3 ;g; %30, [spl, #0x10
...000a800dad® fd 83 05 91 add x29,sp,#0x160 ...000a2829b8 1f 20 03 d5 nop
...e000a800dad 48 a9 fe 90 adrp x8,-0x1ff£82d8000 +e000a2820bc fe 0f 17 f8 str 30, Lsp, #-0x101!
i ...e000a C ush_regs
...000a800dac 98 91 40 f9 ldr x8, [x8] ...000a2829c8 21 28 88 d2 mov x1,#0x4141
- ...000a2829cc 21 28 88 d2 mov x1,#0x4141
...6000a800db0 a8 83 1le 8 stur X8, r_x29, # 0x118] 0009282040 21 28 88 do o <1 #9x4141
~AAN~0ANAdLA ~n Ak An £0 Shake v fes HAaa ...e000a22829d4 21 28 88 d2 mov x1,#0x4141
...000a2829d8 6a ff ff 97 bl _sanitizer_cov_trace_pc
...e000a2829dc 45 ff ff 97 bl _pop_regs
...€000a2829e0 fe 07 41 f8 ldr x30, [sp], #0x10

...e000a2829%e4 1f 20 03 d5 nop
...e000a2829%e8 1f 20 03 d5 nop

KEXT/XNU Fuzzing

. . Ghid Ipt:
Software based binary Instrumentation: P o

find BBs in requested address ranges.

We can enumerate BBs in Ghidra. loop into BBs: find one non-relative instruction.
We can disassemble/assemble instructions. replace it with jump to stub.
you can find at least one instruction in every basic block (BB) that is non PC-relative. rewrite the stub: use next stub

After: Stubs
After: Target BB

meysam_stub_number_0

FUN fffffe000a800d90 e000a28298c fe 0f 1f f8 str x30, [sp, #-0x10]!
- : e000a282990 34 ff ff 97 bl _push_regs
-+.e000a800d30 7T 23 03 d5 pacibsp e000a282994 20 00 80 d2 mov x0,#0x1
...000a800d94 fe 06 ea 17 b meysam_stub_number_0 e000a282998 81 b2 81 d2 mov x1, #0xd94
e000a28299c 01 50 al f2 movk x1,#0xa80, LSL #16
meysam return number 0 e000a2829a0 01 cO df f2 movk x1,#0xfe00, LSL #32
- o B e000a2829a4 el ff ff f2 movk x1,#0xffff, LSL #48
--€000a800d98 fc 6T 15 a9 stp x28,x27, lsp, #0x150] e000a2829a8 76 ff ff 97 bl _sanitizer_cov_trace_pc
...000a800d9c fd 7b 16 a9 stp x29,x30, [sp, #0x160] e000a2829%c 51 ff ff 97 bl _pop_regs
...000a800da® fd 83 05 91 add x29,sp,#0x160 e000a2829b0 fe 07 41 f8 ldr x30, [sp], #0x10
...e000a800da4 48 a9 fe 90 adrp x8,-0x1fff82d8000 e000a2829b4 ff c3 05 dl sub SP,SP,#0x170
e000a2829pb8 f8 f8 15 14 b meysam_return_number_0

...€000a800da8 08 15 40 f9 ldr x8, [x8, #0x28]

KEXT/XNU Fuzzing

Software based binary Instrumentation:

We can enumerate BBs in Ghidra. o
We can disassemble/assemble instructions. Coverage efficiency

The majority of the basic blocks we didn't instrument consist of only a single B instruction.
more instruction can be instrumented.

99.72% of valuable BBs. BBs with at least one data movement, arithmetic, logical, shift and rotate, etc instruction.

\4
fffffe000a800e88 - LAB_fffff... . v [| .1

LAB_fffffe000a800e...
...0e88 ldrsbws, [sp, #0x4b]
...0e8c subs w8,w8,#0x53
...0e90 cset w8, ne
...0e94 tbnz w8,#0x0,LAB_fffffe000a800f...

/ v

fffffe000a800e98 E-C M
...0e98 b LAB_fffffed00a800e9c

/ ‘l‘ thunk_FUN_fffffe00083e7e08
fffffe000a800e9c - LAB_fffff... = v [| 1.
LAB_fffe000a800e... 009755fe8 5f 24 03 d5 bti c
009755fec 87 47 b2 17 b FUN_fffffe00083e7¢08

...0e9c ldrsbws, [sp, #0x4c]

...0ead subs w8,w8,#0x41

...0ead cset w8,ne

...0ea8 tbnz w8,#0x0,LAB_fffffe000a800f...

/| /v

Software based binary Instrumentation:

Collect all coverages only for fuzzer thread

share it over shared memory with the fuzzer.

void sanitizer_cov_trace_pc(uintl6_t kext, uintptr_t address)

{

if

__improbable(do_instrument)

if(__improbable(instrumented_thread == thread_tid(current_thread()))) {

if (__probable((targeted_kext & kext) == kext)) {

if

__improbable(coverage_area == NULL)
return;

__probable(coverage_area->kcov_pos < 0x20000)
unsigned long pos = coverage_area->kcov_pos;
coverage_area—>kcov_areal[pos] = address;
coverage_area->kcov_pos +=1;

2% docs.kernel.org/dev-tools/kcov.html

coverage for fuzzing

rage collection

KEXT/XNU Fuzzing

KCOV: code coverage for fuzzing

KCOV collects and exposes kernel code coverage information in ¢
Coverage data of a running kernel is exported via the kcov debug

xnu / san / coverage / kcov.c (&

& AppleOSSDistributions xnu-11215.1.10 @

Code Blame 279 lines (236 loc) - 7.7 KB

Pishi

<

1 /*
Fuzzer
[Shared]
memory
Input
User mode
Kernel Mode J joctl \
[Shared J
memory Collect coverage

Target Kext

KEXT/XNU Fuzzing

Software based binary Instrumentation:

void fuzz_me(uintptr_tx p)

Does it works?
Let’s instrument one sample function.

{

int error = 0;
size_t len;
char k_buffer[0x100] = {0};
error = copyinstr((user_addr_t)xp, k_buffer, sizeof(k_buffer), &len);
if (error) {
print_message(" [PISHI] can't copyinstr\n");

return;

if (strlen(k_buffer) > 9)
if(k_buffer[@] =='M"')
if(k_buffer[1l] =='E')
if(k_buffer[2] =='Y"')
if(k_buffer[3] =='S')
if(k_buffer[4] =='A"')
if(k_buffer[5] =='M"')
if(k_buffer[6] =='6"')
if(k_buffer[7] =='7"')
if(k_buffer[8] =='8"')
if(k_buffer[9] =='9') {
printf("boom!\n");
intx p = (intx)0x41414141;
p = 0x42424242,

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Does it works?
Let’s instrument one sample function.

But how to feed the coverage to a fuzzer?

| have used extra counters before in libFuzzer to feed additional coverage.

void cover_stop()

{
uint64_t ncov = _ _atomic_load_n(&kcov_data[@], __ ATOMIC_RELAXED);
if (ncov >= KCOV_COVER_SIZE)
fail("too much cover: %1lu", ncov);
for (uint64_t i = 0; i < ncov; i++) {
uint64_t pc = __atomic_load_n(&kcov_datal[i + 1], __ATOMIC_RELAXED);
libfuzzer_coverage[pc % sizeof(libfuzzer_coverage)]++;
}
}

kcovfuzzer.c

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Does it works?
Let’s instrument one sample function.

But how to feed the coverage to a fuzzer?
once | have used extra counter in libFuzzer to feed extra coverage to it.

#if LIBFUZZER_APPLE

namespace fuzzer {

uint8_t *ExtraCountersBegin() { return nullptr; }
uint8_t xExtraCountersiEnd() { return nullptr; }
void ClearExtraCounters() {}

} // namespace fuzzer

#tendif

FuzzerExtraCountersDarwin.cpp

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Does it works?
Let’s instrument one sample function. No problem:

git clone llvm
git patch
build.

namespace fuzzer {
-uint8_t *ExtraCountersBegin() { return nullptr; }
-uint8_t xExtraCountersénd() { return nullptr; }
-void ClearExtraCounters() {}
+extern "C" char _pishi_libfuzzer_coverage([32 << 10];
o
+uint8_t xExtraCountersBegin() { return (uint8_t x*)_pishi_libfuzzer_coverage; }
+uint8_t *xExtraCounterstEnd() { return ((uint8_t %) _pishi_libfuzzer_coverage) + sizeof(_pishi_libfuzzer_coverage); }
o

+void ClearExtraCounters()

+{

+ uintptr_t xBeg = reinterpret_cast<uintptr_tx>(ExtraCountersBegin());
+ uintptr_t xEnd = reinterpret_cast<uintptr_t*>(ExtraCountersEnd());

- for (; Beg < End; Beg++) {

- *Beg = 0;

+ __asm__ __volatile__("" : : : "memory");

+ }

o

} // namespace fuzzer

+}

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Does it works?
Let’s instrument one sample function.

Just wait a few seconds. We will get a panic.

extern "C" int LLVMFuzzerTestOneInput(const uint8_t xdata, size_t size) {

pishi_start(CONFIG_JSON);

uintptr_t xka = (uintptr_t xx)&data;
ioctl(pishi_fd, PISHI_IOCTL_FUZZ, a);

pishi_stop();

return 0;

KEXT/XNU Fuzzing

O O macOS

@€ Terminal Shell Edit View Window 0B Q & SunOct6 13:01
00 | o fuzz — -zsh — 142x35
Last login: Sun Oct 6 13:00:46 on ttys@oe L=

fuzz@fuzzs-Virtual-Machine ~ % [

Demo

*=i0v"n @S0~ 720 | oW

KEXT/XNU Fuzzing

Software based binary Instrumentation:

How to fuzz system calls?

We just fuzzed a function in the kernel with libFuzzer

libprotobuf-mutator, Structure-Aware Fuzzing with libFuzzer

https://github.com/google/libprotobuf-mutator
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/structure-aware-fuzzing.md

How did | instrument XNU?

We can'’t just instrument all BBs in XNU.

xnu / san [coverage | kcov-blacklist (&

& AppleOSSDistributions xnu-10063.101.15 o

Blame 32 lines (27 loc) -+ 641 Bytes

O 00 NN OO U1 B W N =

W W W NN N NN NNDNDNNNNPRP PR ERERERRERE R
N B, & ©W 00 N OO U A WIN P & OO O U A WIN RS

Blanket ignore non-sanitized functions
fun:ksancov_x

fun:kcov_x

fun:dtrace_x

Exclude KSANCOV itself
src:./san/coverage/kcov.c
src:./san/coverage/kcov_ksancov.c
src:./san/coverage/kcov_stksz.c

Exclude KASan runtime
src:./san/memory/*

src:./osfmk/kern/debug.c

Calls from sanitizer hook back to kerne
fun:_disable_preemption
fun:_enable_preemption
fun:current_thread
fun:ml_at_interrupt_context
fun:get_interrupt_level
fun:get_active_thread
fun:cpu_datap
fun:cpu_number
fun:get_cpu_number
fun:pmap_in_ppl
fun:get_preemption_level

Closure of VM_KERNEL_UNSLIDE
fun:vm_memtag_add_ptr_tag
fun:ml_static_unslide
fun:vm_is_addr_slid

KEXT/XNU Fuzzing

xnu / san / coverage | kcov-blacklist-armé4 (&

& AppleOSSDistributions xnu-10063.101.15 o

© 00 NN OO Ul & W N =

el T e e
00 N O UL A WN RS

Blame 18 lines (15 loc) - 444 Bytes

ARM64 specific blacklist

Exclude KASan runtime
src:./osfmk/arm/machine_routines_common.c

These use a local variable to work out which st
a fakestack allocation.
fun:ml_at_interrupt_context
fun:ml_stack_remaining

fun:ml_stack_base

fun:ml_stack_size

fun:kernel_preempt_check

Closure of pmap_in_ppl
fun:pmap_interrupts_disable
fun:pmap_get_cpu_data
fun:ml_get_ppl_cpu_data
fun:pmap_interrupts_restore

KEXT/XNU Fuzzing

Program Trees i 7 B X | i Listing: kernel.release.vmapple
mach_port_names
=) Sources/xnu/osfmk/kern/smr_hash.h
5 Sources/xnu/osfmk/ipc/mach_debug.c
- - =) Sources/xnu/osfmk/ipc/mach_kernelrpc.c = .--20007294180 7f 23 03 d5 pacibsp
How did | instrument XNU? C -
ow did strument U B Sources/xnu/osfimk/inc/mach_msg.c ...e0007294f84 ff c3 02 d1 sub sp, sp, #0xb0
75 Sources,/xnu/osfmk/ipc/mach_port.c ...e0007294f88 fc 6f 05 a9 stp x28,x27, [sp, #local 60]
orovisional_reply._port enf;rced ...e0007294f8c fa 67 06 a9 stp x26,x25, [sp, #local_50]
'y . . - - - - - ...e0007294f90 f8 5f 07 a9 stp x24,x23, [sp, #local_40]
We can t JUSt InStrU ment a” BBS IN XNU __startup_TUNABLES_name_provisional_reply_port_ ...e0007294f94 f6 57 08 a9 stp x22,x21, [sp, #local_30]
_ startup_TUNABLES_spec_provisional_reply_port_e ...€0007294198 f4 4f 09 a9 stp x20,x19, [sp, #local_20]
. . __startup_TUNABLES_entry_provisional_reply_port_e ...€0007294f9c fd 7b 0a a9 stp x29,x30, [sp, #local_10]
KDK contains DWAREF files. Bl e ...e0007294fa0 fd 83 02 91 add x29, sp, #0xad
mach_port_type ...e0007294fa4 80 Of 00 b4 cbz task, LAB_fffffe0007295194
mach_port_allocate_full ...e0007294fa8 f3 03 04 aa mov x19, typesCnt
mach port destro ...e0007294fac fa 03 00 aa mov x26,task
: -POrt_ y) ...€0007294fb0 el 8b 01 a9 stp names,namesCnt, [sp, #local_ 98]
mach_port_guard_exception ...e0007294fb4 €3 17 00 f9 str types, [sp, #local_88]
maC_h_port_c!ea!!ocate_kernel ...e0007294fb8 19 00 80 d2 mov x25,#0x0
kernel.release.t8122.dSYM kernel.release.t8122 7 vmboot.kc
) __TEXT
) __PRELINK_TEXT
/bsd/kern/file.c open() Fffffe000a800d90) _DATA_CONST
) __TEXT_EXEC
) __PRELINK_INFO
/bsd/kern/file.c close() fffffe000a801828 =) __DATA
) __LINKEDIT
.) com.apple.kernel
/bsd/kernffile.c ioctl() fffffe0002282988 ~ .
) com.apple.driver.AppleA7IOP
) com.apple.driver.Apple ARMGIC
) com.apple.driver.AppleARMPMU

Functions are at same offset.

KEXT/XNU Fuzzing

kernel.release.t8122

kernel collection

How did | instrument XNU? kernel.release.t8122.dSYM kernel.release.t8122 pr—
cose()
. . . ioctl()
We can’t just instrument all BBs in XNU.
/bsd/kern/file.c open Fffffe000a800d90
Extract offsets from DWARF file
We can filter functions by path and name /bsd/kern/file.c close Fffe000a801828
Oxfffffffo84aa000
Label offsets in kernel collection. kext
/bsd/kern/file.c ioctl fffffe000a282988
/ B directly to a trampoline
trampoline
Oxfffffffo84da000

Functions are at the same offset. Pishi kext

KEXT/XNU Fuzzing

Software based binary Instrumentation:

libprotobuf-mutator, Structure-Aware Fuzzing with libFuzzer

libFuzzer can be turned into a grammar-aware (i.e. structure-aware) fuzzing engine for a specific input type.

Protobufs provide a convenient way to serialize structured data, Pro ject Zero
and LPM provides an easy way to mutate protobufs for structure-aware fuzzing.

News and updates from the Project Zero team at Google

Pishi is a tool you can hook into another fuzzer e.g. LibAFL

Designing sockfuzzer, a network syscall fuzzer for XNU

Posted by Ned Williamson, Project Zero

https://github.com/google/libprotobuf-mutator
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/structure-aware-fuzzing.md

KEXT/XNU Fuzzing

Software based binary Instrumentation:

Collect all coverages and share it over share memory with the fuzzer.
fork to have a clean state, fd, memory,...

2- Start coverages

Fuzzer
3- Harness

[Shared }
memory

4- stop coverage

User mode

Kernel Mode vioctl "Ok”

[Shared J
memory

6- Collect coverage

< Target Kext

Pishi

Benchmark

0.10

0.08

o
o
o

Time (seconds)

o
o
Y

0.02

0.00

extd with KCOV: Before vs After

270.2%

128.5%

Create files

Write files

Before
Bl After
256.9%
134.2%
Read files Delete files

Time (seconds)

0.20

o
[
(92

o
[
o

0.05

0.00

KEXT/XNU Fuzzing

APFS with Pishi: Before vs After

342.7%
Before 0 601.4%
B After
n 387.7%
0.1%
Create files Write files Read files Delete files

as well as optimizing _push_regs and _pop_regs away by saving and restoring only clobbered registers,

KEXT/XNU Fuzzing

Despite having no tangible runtime overhead, with a little effort, we can embed _sanitizer _cov_trace_ pc into trampoline,

we can save some unnecessary CPU cycles per instrumented BB.

Optimizing
trampoline

void instrument_thunks()

{

dS

volatile

.rept " xstr(REPEAT_COUNT_THUNK) "\n"

.
’

STR x30, [sp, #-16]!'\n"
bl _push_regs\n"

mov x0, #0x0000\n"

mov x1, #0x4141\n"

mov x1, #0x4141\n"

mov x1, #0x4141\n"

mov x1, #0x4141\n"
bl _sanitizer_cov_trace_pc\n"
bl _pop_regs\n"
LDR x30, [spl, #16\n"
\n"
\n"
"*.endr\n"

KEXT/XNU

switch (command.command_case()) {

DEFINE_TEXT PROTO_FUZZER(const Session &session) {
case Command::kMachPortAllocate: {

if (fork
kern_return_t err;
mach_port_t name = MACH_PORT_NULL;
err = mach_port_allocate
mach_task _self(), command.machportallocate().portright(), &name);
1f (err == KERN_SUCCESS
setElement (mtx_ports, open_ports, name);

do_fuzz(session);
} else {

wait(NULL);
pishi_collect_in_parent();

break;

case Command::kMachPortInsertRight: {
syntax = "proto2";
mach_port_t name = getElementAtIndex
mtx_ports, open_ports, command.machportinsertright().port());
mach_port_insert_right(mach_task_self(), name, name,
command.machportinsertright().msgright()); @

message Session {
repeated Command commandsl = 1;
required bytes data_provider = 4;

break;

message Command {
oneof command {
MachPortNames machPortNames = 1;
N RS s Gt MachPortInsertRight machPortInsertRight = 15;

err = mach_port_allocate_name MachPortAllocateName machPortAllocateName =
mach_task_self(), command.machportallocatename().portright(), 4:

command.machportallocatename().portname()); MachPortGetRefs machPortGetRefs =
1T (err = KERN_SUCCESS MachPortModRefs machPortModRefs =
setElement(mtx_ports, open_ports, MachPortDestroy machPortDestroy =
command.machportallocatename().portname()); MachPortDeallocate machPortDeallocate = 7;
MachPortDestruct machPortDestruct = 33;
break; MachPortAllocate machPortAllocate = 5;
MachPortExtractRight machPortExtractRight =

case Command::kMachPortAllocateName: {

panic(cpu

: 0x0000000000000000 x]

0x0000000000000001 x1:

Oxfffffe24ccd3c670 x5:
: 0x0000000000100000 x9:
: 0x0000000000000011

: Oxfffffed0le3afabe
: Oxfffffelb3480db50
: 0x0000000010000003

|i'_} C.:

oxfffffe001549d268

Debugger message: panic

Memory ID:
0S release
0S version:

0x0
type: User
23F79

0x0000000000001a03
Oxfffffe4d0le3afabe
0x0000000003100001

: 0x0000000000000000

: Oxf444fe24ccd3c670

: Oxfffffelb3480db50
: 0x0000000000000013

fp:

Cpsr.

Oxfffffe401le3af9do
0x20401204

v)

Oxfffffe24ccd3c670
Oxfffffed0le3afdlo

: Oxfffffelb33ae8400
: 0x0000000000000000
: 0x0000000000000000
: Oxfffffed0le3afc68
: Oxfffffelb3480db50

Lr:

esr.

0x95bcfe001548e020
0x72000002

Kernel version: Darwin Kernel Version 23.5.0: Wed May 1 20:12:39 PDT 2024
Fileset Kernelcache UUID: 29397EDDD6C60A125AA3CC4EC8D6148A
Kernel UUID: A8517A76-B187-30FE-ADF3-0303CDEE33CE

Boot session UUID: 430D3164-42FA-416B-9AC4-B57644CFB5A3

KEXT/XNU Fuzzing

1 caller oxfffffe@015cbee28): PAC failure from kernel with DA key while authing x16 at pc @xfffffe001549d268, 1r 0x95bcfed01548e020

0x0000000000000013
Oxfffffed0le3afco0

: 0x0000000000000288
5: 0x0000000000000000
1 0x0000000000001203
: 0x0000000000000013
/1 0x0000000000131313

Oxfffffed0le3af9a0d
0x0000000102600000

virtlO-shmem

lvshmem

Fuzzing remote attack surfaces like SMB

Mapped memory

KEXT/XNU Fuzzing

QEM'V'

PCI

VM
iInput
| /
Fuzzer Kernel
_ Pishi J< smb
coverage
PCI
driver

device

\

A

HOST

KEXT/XNU Fuzzing

Thank you for listening!

| have covered a lot more in my blog post(going to publish it just now)
ROOtkitsmm.github.io

Any questions?

