
Pishi
Coverage guided macOS KEXT fuzzing.

Meysam Firouzi @R00tkitSMM 
POC2024 

November 7-8, 2024

Whoami
• Security Researcher @ MBition - Mercedes-Benz Innovation Lab.

• Focusing on low level stuff.

• Used to be a Windows hacker, now mostly Linux and XNU.

https://R00tkitSMM.github.io

Agenda

• Why I ended up implementing Pishi.

• Fuzzing ImageIO and AppleAVD.

• Kernel Instrumentation options.

• Structure aware fuzzing.

ImageIO
ImageIO is Apple’s Framework that handles image parsing, which exposes 0click attack surface.

ImageIO
Closed Source macOS binary fuzzing.

ImageIO
Closed Source macOS binary fuzzing.

Everyone is fuzzing it now.

Can I beat them?

Let’s give it a try, New fuzzer means covering more state spaces.

Jackalope is a customizable, distributed, 
coverage-guided fuzzer that is able to work with black-box binaries.

ImageIO
Closed Source macOS binary fuzzing.

Three new test header functions for different file formats, such as KTX2, WebP, and ETC

Everyone is fuzzing it now.

Can I beat them?

Wait a minute.

ImageIO
Closed-source macOS binary fuzzing.

Everyone is fuzzing it now.

Can I beat them?

Samuel Groß fuzzed OpenEXR, now ImageIO is using Apple’s closed-source new implementation of EXR in libAppleEXR.dylib.

One new implementation one and some new file formats.

Three new testHeader functions for different file formats. such as KTX2 and WebP and ETC.

Wait a minute.

ImageIO
Closed-source macOS binary fuzzing.

Everyone is fuzzing it now.

Can I beat them?

To make sure that the coverage-guided fuzzing wouldn't diverge 
towards other image formats supported by ImageIO.

ImageIO
Closed Source macOS binary fuzzing.

Everyone is fuzzing it now.

Can I beat them?

Yes

CVE-2023-32384
CVE-2023-23519
CVE-2023-32372
CVE-2023-27929
CVE-2023-27948
CVE-2023-27947
CVE-2023-42899
CVE-2023-42865
CVE-2023-42862

ImageIO

KTX, WebP, and EXR are file formats.

HEIC: HEVC(H.265) in HEIF

AVCI: AVC in HEIF

But HEIF is different

Who is decoding H.264, H.265,…?

Reference: Apple, 503_introducing_heif_and_hevc.pdf and 513_direct_access_to_media_encoding_and_decoding.pdf

AppleAVD

DTrace is a comprehensive dynamic tracing framework

How can I fuzz H.264 and H.265 with Jackalope?

Let’s see what is happening on AppleAVD with DTrace

https://en.wikipedia.org/wiki/Tracing_(software)

AppleAVD
ImageIO does not talk with AppleAVD directly.

AppleAVD

Ivan: Yes

Can ImageIO talk with AppleAVD directly?

But we are fuzzing file format if we mutate files.
And payload is deep inside HEIF

AppleAVD
ImageIO is Apple’s Framework that handles image parsing, which exposes 0click attack surface.

Let’s mutate payload just before passing to the kernel.

AppleAVD

AppleAVD

This is part of a POC by Natalie Silvanovich.

What we are mutating?  
let’s talk with AppleAVD directly.
But we have no clue what functions or BBs have been covered.

AppleAVD

Part of a POC by Natalie Silvanovich.

This is good.
But we have no clue what are have covered.

DTrace again.

Just fifteen hundred.
anyway this is not an input for fuzzer.

AppleAVD
Fuzzing AppleAVD

AppleAVD
Fuzzing AppleAVD

AppleAVD is closed source.

What are the macOS kernel instrumentation options for M1/Apple Silicon?

Dumb fuzzing won’t give us anything. we need a feedback-driven fuzzing.

KEXT/XNU Fuzzing
macOS kernel instrumentation options for M1/Apple Silicon:

XNU: KSANCOV, KASAN kernel binary in KDK does not have KSANCOV. And I don’t like building XNU with KCOV.

Open Source part:

XNU: SockFuzzer, XNU kernel is compiled as a library and run within a custom user space environment.

BUT AppleAVD is Closed source.

macOS is a mix of open source and closed source components.

KEXT/XNU Fuzzing

macOS kernel instrumentation options for M1/Apple Silicon:

Hardware-based instrumentation:
Intel CPUs: 
Intel-PT is a technology available in modern Intel CPUs that allows efficient tracing of all the instructions executed 
by a process. 
kAFL relies on a special CPU feature, i.e., Intel Processor Trace (Intel-PT), to collect the code coverage information

But M1/Apple Silicon is Arm based.

How to instrument closed source KEXTs?

KEXT/XNU Fuzzing

macOS kernel instrumentation options for M1/Apple Silicon:

Hardware based instrumentation:

ARM CPUs: 
Coresight is an umbrella of technologies allowing for the debugging of ARM based SoC. 
It includes solutions for JTAG and HW-assisted tracing.

CoreSight is a set of hardware features designed to enable system debugging, profiling, and tracing. 
important components of CoreSight are the ETM (Embedded Trace Macrocell) and ETR (Embedded Trace Router)

ARMored CoreSight: Towards Efficient Binary-only Fuzzing

KEXT/XNU Fuzzing
CoreSight is a set of hardware features designed to enable system debugging, profiling, and tracing. 
Two important components of CoreSight are the ETM (Embedded Trace Macrocell) and ETR (Embedded Trace Router)

But ETM and ETR are not available in Apple Silicon. 
 or they are just undocumented:

KTRW: The journey to build a debuggable iPhone

Operation Triangulation

https://googleprojectzero.blogspot.com/2019/10/ktrw-journey-to-build-debuggable-iphone.html

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Loading KEXT into user mode with a custom Mach-O loader
https://github.com/pwn0rz/fairplay_research/tree/master Implements a loader.

https://github.com/taviso/loadlibrary, to load dll in Linux

partially with extracted IDA decompiler pseudocode

https://github.com/pwn0rz/fairplay_research/tree/master
https://github.com/taviso/loadlibrary

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Dynamic instrumentation: 

Inserts the code for generating feedback into the target program at run time. 
 
With breakpoint or like Jackalope binary rewriting.
feasible but difficult.

Instrumentations for binary-only fuzzing are categorized into:

ARMored CoreSight: Towards Efficient Binary-only Fuzzing

No breakpoint in Apple Silicon. 

Anyway, it needs two devices.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
statically rewriting target binaries.

I decided to investigate on this one.
ARMored CoreSight: Towards Efficient Binary-only Fuzzing

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Great talks but they are mostly about user mode binaries. And Linux ELF files
existing methods have fundamental limitations when applied to macOS KEXTs.

Static instrumentation or Binary rewriting

Retrowrite: a static binary rewriter for x64 and aarch64
StochFuzz: A New Solution for Binary-only Fuzzing
ArmWrestling: Efficient binary rewriting for aarch64. which contains IL lifting
ARMore: Pushing Love Back Into Binaries
More and more talks

What do we have to study?

https://www.computer.org/csdl/journal/tq/2024/04/10315961/1S2UHhBqryU

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

Next 2 days:
How to load KEXT?

Do hardware mitigations (KTRR,…) allow me to patch memory
in M1?

How to fuzz KEXT?  
 
KextFuzz 🤨

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

KextFuzz: Fuzzing macOS Kernel EXTensions on Apple Silicon via Exploiting Mitigations

How to load KEXT?

What is Kext Collection?

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

What are they instrumenting?

How they are instrumenting?

KEXT/XNU Fuzzing

Static instrumentation:
Binary rewriting

IAT hooking

How they are instrumenting?

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Where can they put this BL instructions
without corrupting the original behavior?

Image by KextFuzz paper.

1- XPACD instructions

What are they instrumenting?

https://www.usenix.org/conference/usenixsecurity23/presentation/yin

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

XPACD instruction can be replaced by a BL.

Compiler emitted code for each vtable access.

It’s not part of the program logic.
Calling into a imported function is through
__auth_stubs and it’s clobbering X16, X17 and current LR. 
we will answer this later.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

Where can they put this BL instructions
without corrupting the original behavior?

Part of KextFuzz code

2- PACIBSP instructions

Again this is not part of the program logic.

prologue

epilogue

https://www.usenix.org/conference/usenixsecurity23/presentation/yin

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

All functions + ALL XPACD instructions, is not roughly, it’s barely.

Part of KextFuzz paper.

This is good but not enough.

https://www.usenix.org/conference/usenixsecurity23/presentation/yin

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

Let’s recap what is happening.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

how to instrument every BB?

We can embed a KEXT into kernel collection.

But we don’t know the load address.
(The address of _COVPC or any shellcode is unknown at the instrumentation time.)
 
also  
 
We can’t just call into a exported function from arbitrary address. ⬇
(Calling into a imported function is through __auth_stubs and it’s clobbering X16, X17 and current LR.)
 
Other instruction can’t be removed without changing intended behavior.

Opportunities and challenges.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

how to instrument every BB?

Calling into a imported function is through __auth_stubs and it’s clobbering X16, X17 and current LR.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

how to instrument every BB?

This needs to patch 5 instructions. To save and restore CPU context, otherwise registers will be clobbered.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

Problem:
We can’t just put BL instruction into a random address. we need to preserver x16,x17 and LR.
We don’t know where does our KEXT gets loaded to directly jump somewhere in it.
Replacing any instruction with BL needs to patch 5 instructions.

Possible Solution:
what what about modifying __auth_stubs or adding a new section to Mach-O?

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

what what about modifying __auth_stubs or adding a new section to Mach-O?

kmutil returned an error.
kmutil just ignored added section.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

What does kmutil is doing under the hood?

Kmutil is just another binary rewriting tool.

Let’s see what has happened to BL and __auth_stubs in kernel collection.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

kmutil is rewriting KEXT into one blob. Calls are directly to the function, and not through __auth_stubs  

Let’s see what has happened to BL and __auth_stubs in kernel collection.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

Depreciate: on-demand loadable KEXT, kernel had to bind and fix any relative address at runtime.
 
Now: prelinked blobs, to speed up the boot process these steps are done at link time when you are creating a Boot Kext Collection.

Not for AKC

No clobbering for KEXTs 
in Boot Kext collection

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting kmutil removes __auth_stubs of boot collection. 

this is not a case for AKC. Latter at boot time xnu will load and fix AKC.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

load address of KEXTs within kernel Collection are relatives to each other.
It’s now one big blob

consequently unlink KextFuzz, instead of instrumenting a KEXT’s Mach-O file,

we instrument them later inside Boot Kext Collection blob.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Each Instruction hooking needs its own trampoline,
to be able to execute the original patched instruction. We can simply put lots of trampolines into our kext.

KEXT/XNU Fuzzing

Static instrumentation:
Binary rewriting

.rept 0x1000

nop

.endr

Memory spray but this time for fuzzing.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

“a basic block is a straight-line code sequence with no branches in except to the entry and no branches out except at the exit.” (Wikipedia)

“control-flow graph (CFG) is a representation, using graph notation, of all paths that might be traversed through a program during its execution.” (Wikipedia)

In CFG a Node is BB. No vulnerability with 100% coverage.

What to instrument?

Fuzzer-centric code coverage metrics:

coverage guided fuzzing needs metrics

https://en.wikipedia.org/wiki/Code_coverage

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

How to instrument?

How to fix the relative instruction?

How to assemble/disassemble?

Binary rewriting is difficult.
Even more difficult in the kernel.

Every mistake is panic.

BBs are sufficient.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Static instrumentation:
Binary rewriting

After playing with Keystone And thinking about IDA-PRO.
I decide to use Ghidra.

How to instrument?

https://www.keystone-engine.org/

KEXT/XNU Fuzzing
Software based binary Instrumentation:

following instructions are relative instructions:
• B and its sub instructions are PC relative
• ADR: PC-relative address.
• ADRP: PC-relative address to 4KB page. (but it definitely has one "add" after it.)
• LDR (literal): Load Register (literal). only one Addressing modes.
• LDRSW (literal): Load Register Signed Word (literal).
• PRFM (literal): Prefetch Memory (literal).

How to instrument and how to fix the relative instructions?

Do we even need that?

Branches are the edges of the CFG, so they are not part of BBs.

1.All ARM64 Instructions are 32 bits long.
2.BBs are Disjoint sets (I explain this later).
3.Almost all ARM64 instructions are non-relative.

KEXT/XNU Fuzzing
Software based binary Instrumentation:
But how to fix the relative instructions?
Do we even need that?

AArch64 mnemonics can have 3 types of operands. Immediate, Register, Memory

KEXT/XNU Fuzzing
Software based binary Instrumentation:
But how to fix the relative instructions?
Do we even need that?

Data movement, arithmetic, logical, shift and rotate, etc instruction.

We can find at least one
non relative(to current address) instruction inside each BB.

Almost all ARM64 instructions are non-relative.

KEXT/XNU Fuzzing
Software based binary Instrumentation:
But how to fix the relative instructions?
Do we even need that?

Does the location of instrumentation within each basic block (BB) matter?

No BBs are Disjoint sets (I explain this later) of addresses. 
each instruction of a BB can represent that BB equally.

When doing BB level instrumentation.

KEXT/XNU Fuzzing
Software based binary Instrumentation:
But how to fix the relative instructions?
Do we even need that?

1- Location of instrumentation within each basic block does not matter

2- With high probability there is at least one non relative instruction in every BB.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

you can find at least one instruction in every basic block (BB) that is non PC-relative.

We can enumerate BBs in Ghidra.
We can disassemble/assemble instructions.

Ghidra script: 
find stubs in our KEXT. 
find BBs in requested address ranges. 
loop into BBs: find one non-relative instruction. 
replace it with jump to stub. 
rewrite the stub: use next stub.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

you can find at least one instruction in every basic block (BB) that is non PC-relative.

We can enumerate BBs in Ghidra.
We can disassemble/assemble instructions.

Before: Target BB
Before: Stubs

Ghidra script: 
find stubs in our KEXT. 
find BBs in requested address ranges. 
loop into BBs: find one non-relative instruction. 
replace it with jump to stub. 
rewrite the stub: use next stub

KEXT/XNU Fuzzing
Software based binary Instrumentation:

you can find at least one instruction in every basic block (BB) that is non PC-relative.

We can enumerate BBs in Ghidra.
We can disassemble/assemble instructions.

Ghidra script: 
find stubs in our KEXT. 
find BBs in requested address ranges. 
loop into BBs: find one non-relative instruction. 
replace it with jump to stub. 
rewrite the stub: use next stub

After: Target BB
After: Stubs

KEXT/XNU Fuzzing
Software based binary Instrumentation:

We can enumerate BBs in Ghidra.
We can disassemble/assemble instructions.

The majority of the basic blocks we didn't instrument consist of only a single B instruction. 
more instruction can be instrumented.

Coverage efficiency

99.72% of valuable BBs. BBs with at least one data movement, arithmetic, logical, shift and rotate, etc instruction.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Collect all coverages only for fuzzer thread

share it over shared memory with the fuzzer.

KEXT/XNU Fuzzing
Software based binary Instrumentation:
Does it works? 
Let’s instrument one sample function.

KEXT/XNU Fuzzing
Software based binary Instrumentation:
Does it works? 
Let’s instrument one sample function.
But how to feed the coverage to a fuzzer?

kcovfuzzer.c

I have used extra counters before in libFuzzer to feed additional coverage.

KEXT/XNU Fuzzing
Software based binary Instrumentation:
Does it works? 
Let’s instrument one sample function.

But how to feed the coverage to a fuzzer?

FuzzerExtraCountersDarwin.cpp

once I have used extra counter in libFuzzer to feed extra coverage to it.

KEXT/XNU Fuzzing
Software based binary Instrumentation:
Does it works? 
Let’s instrument one sample function. No problem: 

git clone llvm 
git patch 
build.

KEXT/XNU Fuzzing
Software based binary Instrumentation:
Does it works? 
Let’s instrument one sample function.

Just wait a few seconds. We will get a panic.

KEXT/XNU Fuzzing

Demo

KEXT/XNU Fuzzing
Software based binary Instrumentation:

How to fuzz system calls?

libprotobuf-mutator, Structure-Aware Fuzzing with libFuzzer

We just fuzzed a function in the kernel with libFuzzer

https://github.com/google/libprotobuf-mutator
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/structure-aware-fuzzing.md

KEXT/XNU Fuzzing
How did I instrument XNU?

We can’t just instrument all BBs in XNU.

KEXT/XNU Fuzzing
How did I instrument XNU?

We can’t just instrument all BBs in XNU.

Functions are at same offset.

KDK contains DWARF files.

KEXT/XNU Fuzzing
How did I instrument XNU?

We can’t just instrument all BBs in XNU.

Functions are at the same offset.

Extract offsets from DWARF file
We can filter functions by path and name

Label offsets in kernel collection.

KEXT/XNU Fuzzing
Software based binary Instrumentation:

libprotobuf-mutator, Structure-Aware Fuzzing with libFuzzer

libFuzzer can be turned into a grammar-aware (i.e. structure-aware) fuzzing engine for a specific input type.

Protobufs provide a convenient way to serialize structured data, 
and LPM provides an easy way to mutate protobufs for structure-aware fuzzing.

Pishi is a tool you can hook into another fuzzer e.g. LibAFL

https://github.com/google/libprotobuf-mutator
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/structure-aware-fuzzing.md

KEXT/XNU Fuzzing
Software based binary Instrumentation:

Collect all coverages and share it over share memory with the fuzzer. 
fork to have a clean state, fd, memory,…

KEXT/XNU Fuzzing

Benchmark

KEXT/XNU Fuzzing

Optimizing 
trampoline

Despite having no tangible runtime overhead, with a little effort, we can embed _sanitizer_cov_trace_pc into trampoline,

as well as optimizing _push_regs and _pop_regs away by saving and restoring only clobbered registers,

we can save some unnecessary CPU cycles per instrumented BB.

KEXT/XNU Fuzzing

KEXT/XNU Fuzzing

KEXT/XNU Fuzzing

virtIO-shmem

ivshmem
Fuzzing remote attack surfaces like SMB

KEXT/XNU Fuzzing

Thank you for listening! 
 
I have covered a lot more in my blog post(going to publish it just now)

R00tkitsmm.github.io

Any questions?

